
Real-Time DSP Implementation of Pedestrian

Detection Algorithm Using HOG Features

Akshay Chavan

Electrical and Computer Engineering

Texas Tech University

Lubbock, USA

chavanakshay9@gmail.com

Senthil Kumar Yogamani

Advanced Driver Assistance Systems

Texas Instruments Inc.

Dallas, USA

ysenthil@ti.com

Abstract— Pedestrian Detection is the most critical safety

application in automotive driver assistance systems. Histogram of

Oriented Gradients (HOG) features is known to produce the

state of the art results for this application. This feature is very

compute-intensive and it is difficult to achieve real-time

performance by direct porting of community software like

OpenCV. In this paper, we discuss an efficient DSP

implementation of this algorithm and also demonstrate how

architecture aware design choices can lead to huge performance

improvements. The algorithm was implemented and profiled on a

Texas Instruments’ C674x DSP, achieving a performance of 20

fps for a VGA resolution video sequence. Compared to

OpenCV’s HOG function, the proposed implementation is 130X

faster without a significant loss of accuracy.

Pedestrian detection; Embedded Vision; DSP Optimization;

OpenCV.

I. INTRODUCTION

A pedestrian is a moving obstacle for an automotive vehicle
and a quick response time is required to detect the presence of
a pedestrian on the road and react by stopping or slowing down
the vehicle to avoid accidents. Driver assistance systems which
detect pedestrians can aid the driver in reducing accidents.
Vision based systems are commonly used for this purpose to
detect pedestrians on the road or on sidewalk. Pedestrian
detection or people detection is applicable in areas like
surveillance, robotics, tracking players in multiplayer games
like soccer to develop or detect game strategies, etc. Detecting
people in surveillance videos can also be used for market
research for example, in monitoring super market aisles. It is
challenging to develop a real-time vision algorithm because of
variations in clothing, pose, lighting conditions and dynamic
backgrounds.

In this work, we develop and implement a real-time
pedestrian detection system on an embedded processor with
reasonable accuracy. The platform chosen is the low power and
high precision fixed/floating-point TMS320C674x™ VLIW
DSP.

A. Related Work

Gerónimo [1] and Gavrila [2] discussed various state of the
art pedestrian detection algorithms, evaluated them for their
performance in terms of accuracy and execution time. Results
of the study showed that the HOG-based linear SVM approach
[3] significantly outperformed in detection accuracy with the
second best being the Haar features approach [4]. HOG feature

based approach, though accurate, is computationally expensive.
The aim of our literature review was to select an algorithm that
is accurate and feasible for a real-time implementation. There
have been several attempts of developing real-time pedestrian
detection systems using template based techniques [5], using
IR cameras for night time driver assistance [6], LIDAR based
approach [7] and several HOG feature derivatives. Recent
attempts making use of HOG feature derivatives in [8] and [9]
obtained a performance of ~10 fps on a standard PC platform.
Desktop GPU implementation in [12] achieved 40 fps.

The rest of the paper is divided into the following parts.
Section II describes the standard HOG based pedestrian
detection process in detail. Sections III and IV discuss the
algorithmic design and DSP optimization techniques. Section
V discusses the results obtained using the proposed
implementation.

II. IMPLEMENTATION DETAILS OF HOG FEATURES BASED

PEDESTRIAN DETECTION

Dalal [3] studied the Histograms of Oriented Gradient
(HOG) based feature descriptors using Linear SVM. This
algorithm produces state-of-the-art results and has become the
standard feature for many object detection problems. We use
the OpenCV implementation of HOG + SVM as our reference
to compare performance and accuracy. Figure 2 shows a block
diagram of this implementation. Image pyramid is employed to
detect pedestrians at different scales. Refer to [3] for more
details.

Figure 1. Illustration of 8x8 HOG cells(dark green), 16x16 HOG blocks

consisiting of 4 cells(light green) and 64x128 detection window(lighter green)

2012 12th International Conference on ITS Telecommunications

978-1-4673-3070-1/12/$31.00 ©2012 IEEE 352

For the best performance of the algorithm it is
recommended to use RGB color space images where each
pixel’s gradient vector is chosen from the color channel with
the largest norm. Optimal parameters include detection window
size of 128×64 pixels, [-1, 0, 1] gradient filter with no
smoothing, 9 orientation bins for the range 0-180

o
, block size

of 16×16 pixels containing 4 cells of 8×8 pixels, Gaussian
spatial window with standard deviation of 8 pixels and L2-Hys
block normalization and a linear SVM classifier. Figure 1
shows the sizes of cells, blocks and detection window which
was used. Each block is weighted with a Gaussian window to
give higher weights to the pixels in the center than on the
edges, and the orientations are grouped into evenly spaced bins
over 0-180

o
 to form an orientation histogram. Histograms from

each block are normalized using L2Hys norm to correct for the
local illumination changes in the image. The final descriptor is
a vector of concatenated histograms of all the blocks in the
detection window.

III. ALGORITHMIC IMPROVEMENTS

 This project aims at developing a pedestrian detection

system on a floating point TI C674x DSP embedded platform.

The OpenCV’s C++ implementation of people detection tested

on this gave an execution time of over a minute per frame

according to the number of clock cycles obtained from the

cycle accurate simulator. C++ is inefficient for any optimizing

compiler and rewriting the code in C providing a 5X

improvement. As this is not algorithmic improvement, we do

not use this factor for performance comparison of our

algorithm. The DSP benchmark for the C code was

approximately 15 seconds per frame.

 Dalal [3] quotes a 1.5% reduction in performance at 10-4

FPPW(False Positives Per Window) with the use of grayscale

images instead of RGB images. The use of grayscale images

was intended to make use of the Y luminance channel of the

YCbCr image provided by the camera without any

computations. The use of RGB image required more than

thrice the number of computations per pixel while computing

magnitude and orientations, in comparison to the use of

grayscale image. Hence we chose to use only the grayscale

image.

Figure 2. Illustration of the Detection Window Pruning Scheme. The above

sequence of figures are sample detection window, magnitude of Gx, edge-

linking filtered & thresholded image, three rectanglular windows (in green)

where number of edge pixels are counted.

 Second major change was to remove the Gaussian spatial

weighting applied to the blocks in the detection window. Dalal

[3] states that a Gaussian spatial window to each pixel before

accumulating orientation votes into cells improves

performance by 1% at 10-4 FPPW. The removal of these

computations reduced the accuracy of the classifier from 1

false positive for every 10
-4

 negative detection windows to

1.01015 false positives for every 10
-4

 negative detection

windows, which is negligible considering the large reduction

in the number of computations after the removal of Gaussian

weighting.

Figure 3. Block diagram of the people detect algorithm

A. Pruning of Detection Windows

The classification step is a computationally expensive step.
A standard VGA image of 640 by 480 pixels will have more
than 12500 detection windows which require a dot product of
two vectors of length 3780. Therefore to reduce the number of
dot products used, a coarse detection algorithm to reduce the
number of detection windows was devised.

A typical scene from a front camera in a car consists of
many regions with low texture corresponding to road, sky, etc.
A simple detector can reject these regions easily with few
computations. As the gradients are already computed, it is a
common practice to count the number of edges and reject
windows with a small number of edges. A threshold is applied
on the gradient magnitude to obtain a binary edge image and
the number of edges can be efficiently calculated using Integral
images. A suitable threshold is experimentally chosen to allow
pedestrians.

We improve this method in two ways. Firstly, we observed
that the edges corresponding to pedestrian silhouette are
predominantly vertical or have a strong vertical component.
Hence we use thresholded horizontal gradients instead of
gradient magnitude. Secondly, we also make use of the fact
that these edges in the silhouette are strongly linked spatially.
So for the shortlisted edges which have a strong horizontal
gradient, we also check if there is another shortlisted edge in
the gradient orientation direction on top and bottom. After this
pruning of edge pixels, we use three windows as shown in
Figure 3 and count the number of remaining edges in each of

353

these and use 3 different thresholds to make sure each region
has significant number of edges. This ROI scheme rejects
about 40% of the detection windows and was observed to be
more robust in allowing pedestrian windows.

Figure 4. Block diagram of the proposed pedestrian detection algorithm. The

blocks in yellow are moved out of the detection window and converted to

frame-level functions with re-use of computations

B. Design Choices and Restructuring of HOG of Blocks

computation to enable computation re-use

The OpenCV implementation has many redundant
(repeated) calculations across detection windows. Computation
of the histogram of the blocks and normalization was repeated
for each overlapping window and overlapping block. This led
to atleast 87% and 93% of repeated computations for every
horizontal and vertical slide of the detection window by 8
pixels respectively.

To prevent the repetitive calculations, the algorithm was
redesigned to pre-calculate the computations required for the
classification step (dot product with SVM). The technique of
pre-calculating and storing the computations for later use
requires the cell’s side, the block-stride, the window-stride, and
both the sides of the detection window to be in multiples of the
stride (number of pixels shift between the two adjacent
detection windows).

Figure 4 shows the data flow of the modified algorithm
after algorithmic restructuring. The C code implementation was
modified to have the stride value set to 8 pixels. This
modification gave a reasonable performance when compared to
the detection results from strides of 2 and 4. Additionally, the
authors suggest block spacing stride of 8 pixels to get a 4-fold
coverage of each cell for optimal performance. This
modification of setting the block and window stride value to a
particular value allows the use of computations done for HOG
descriptor in a detection window to be reused for the adjacent
window. The cells in a frame are not overlapping and a fixed
stride value results in prior knowledge of the number and the

position of overlapping blocks in a frame. So the pre-
computing step is designed to store HOG cells and normalized
overlapping HOG of blocks for a frame before entering the
classification step.

Further a pre-computation step was added in the image
rescaling function. The image rescaling was implemented using
bilinear interpolation. The rescaled coordinates for the longest
side of the image was pre-computed rather than calculating
them for each pixel. This pre-computation reduced the
execution time of the rescaling function by half.

IV. OTHER DESIGN AND IMPLEMENTATION DETAILS

A. DSP Specific Kernel Optimization

Kernel based optimization was applied for the TI C674x
DSP. The iterative functions like division, square-root are
replaced by the functions from the C674x fastRTS library.
Lookup table was created for the iterative tan inverse function
for equally spaced bins from 0 to 180 degrees and a floating
point lookup table for reciprocal of horizontal gradient to avoid
dividing the horizontal gradient with the vertical gradient. For
some fine optimization the dependency on the math library was
removed (removed floor and ceil, macro for abs) to avoid
function calls and were replaced by macros. Some of the other
criteria for optimization on the platform were to choose proper
compiler options like the optimization_level (–o3) and –mt
option for optimization. When opt_level=3 is used, the
compiler will try to perform all the optimization techniques it is
capable of carrying out (software pipelining) based on the
knowledge that is available to it. The –mt option tells the
compiler that, for any function in the entire application, the
pointer-based parameters of this function will never point to the
same address [10].

B. Floating-point to Fixed-point conversion

 Even on a floating point DSP, fixed point arithmetic is

typically faster. As mentioned earlier, the classification step is

the most computationally expensive step because of the dot

product of two vectors of length 3781 for each detection

window. The floating point SVM vector is converted to fixed

point vector to facilitate the use of the fixed point c64+ DSP

library which gives a 4 times faster dot product calculation.

The image rescaling function was converted to a fixed point

function from a floating point function using Q point

conversion to get a speed up of almost 2X after the pre-

computation step. The DSP has Very Long Instruction Word

(VLIW) architecture which enables SIMD instructions. The

library used makes use of the SIMD instructions for better

vectorization and parallel computations.

V. RESULTS AND DISCUSSION

The aim of the project was to develop a real time pedestrian
detection system on an embedded platform. The OpenCV’s
implementation is best suited for computer platforms. The
modifications done of the implementation were to improve the
data flow and efficiently utilize the DSP resources to obtain
best performance. The 130 times improvement is on the base
implementation when ported on a DSP system. We determined
that by designing the loops in the implementation to facilitate

354

better data flow any implementation can be optimized to give
best performance on embedded platform. The table below
shows the approximate speed-ups obtained in the optimization
process. Figure 5 shows a sample result of our algorithm using
the challenging test data BAHNHOF sequence [13]. The
algorithm was tested over ten 5 minute automotive video clips
and accuracy was very similar to OpenCV’s implementation.
For these videos, we obtained a miss rate of 0.05 for a FPPW
of 0.1.

Figure 5. Example result on BAHNOF sequence

Further improvements could be done by enabling DMA and
ping-pong buffering. Designing the data flow for block based
implementation over the frame that help in reducing the
memory overheads can be considered as a part of algorithmic
optimization. Frameworks mentioned in [11] can be used for
implementing memory efficient block-based schemes.

TABLE I. PERFORMANCE IMPROVEMENT FACTORS

Process
Individual

Factors

Cumulative

Factors

C++ → C 5 -

Grayscale & Uniform Weighting 1.5 1.5

Pre-computations 10 15

DSP libraries 1.4 21

SVM – fixed point / Fixed point lib 1.8 39

Pre-computations Image rescaling 1.9 72

Image rescaling - fixed point 1.3 94

Region of Interest 1.4 130

A. Comparison with Adaboost + Integral Histogram

A common fast alternative to HOG + SVM is Integral
Histogram features + Adaboost. Zhu [14] uses this approach
and reports a 70X with a significant loss of accuracy. From
their comparison figure, the miss rate can be 2-3X worse
compared to HOG+SVM. In addition to the loss of accuracy,
the algorithm cannot be mapped efficiently on the DSP.
Integral Histogram requires large additional memory (scales
linearly with the number of histogram bins) which increases
the memory requirements significantly and inhibits block-
based operations on the DSP. Although this is not a concern on
large memory systems like a PC, this severely impacts
performance on a DSP. Additionally, Adaboost classifier uses a

dynamic cascade classifier which inhibits the static scheduling
required for a VLIW processor. Hence the parallel DSP units
cannot be efficiently used. In summary, Adaboost + Integral
Histogram approach works well on a non-parallel processor
with large memory. But on a parallel architecture embedded
system, HOG + SVM performs better in terms of speed and
accuracy.

VI. CONCLUSION

We demonstrate a real-time pedestrian detection system
which runs at 20 fps on an embedded DSP. Performance
improvement of 130X over OpenCV shows that there is a lot of
scope for achieving significant performance improvements
using embedded vision techniques. Higher performance can be
achieved by incorporating detection window tracking and other
automotive scene heuristics. Better accuracy might be achieved
by using intersection kernels for SVM.

REFERENCES

[1] D. Gerónimo, A.M. López, A.D Sappa, T Graf, "Survey of Pedestrian
Detection for Advanced Driver Assistance Systems," Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol.32, no.7, pp.1239-
1258, July 2010.

[2] M. Enzweiler, D.M. Gavrila, D.M, "Monocular Pedestrian Detection:
Survey and Experiments," Pattern Analysis and Machine Intelligence,
IEEE Transactions on , vol.31, no.12, pp.2179-2195, Dec. 2009.

[3] N Dalal, B. Triggs, B, "Histograms of oriented gradients for human
detection," Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol.1, no., pp.886-893
vol. 1, 25-25 June 2005.

[4] P. Viola, M. Jones, D Snow, "Detecting Pedestrians Using Patterns of
Motion and Appearance," International Journal of Computer Vision,
2005. Springer Netherlands, vol.63, no., pp.153-161 vol. 63, 2 July 2005

[5] D. Gavrila, D. Vernon, "Pedestrian Detection from a Moving
Vehicle," Computer Vision — ECCV 2000. Springer Berlin /
Heidelberg, vol.1, no., pp.37-89349 vol. 1843. 2005

[6] J. Ge, Y. Luo, G. Tei , "Real-Time Pedestrian Detection and Tracking at
Nighttime for Driver-Assistance Systems," Intelligent Transportation
Systems, IEEE Transactions on , vol.10, no.2, pp.283-298, June 2009

[7] C. Premebida, O. Ludwig, U. Nunes, “LIDAR and vision-based
pedestrian detection system”. Journal of Field Robotics 2006, 26: 696–
711.

[8] G. Xu, X. Wu, L. Liu, Z. W, "Real-time pedestrian detection based on
edge factor and Histogram of Oriented Gradient," Information and
Automation (ICIA), 2011 IEEE International Conference on , vol., no.,
pp.384-389, 6-8 June 2011.

[9] M. Bansal, S. Jung, B. Matei, J. Eledath, H. Sawhney, "A real-time
pedestrian detection system based on structure and appearance
classification," Robotics and Automation (ICRA), 2010 IEEE
International Conference on , vol., no., pp.903-909, 3-7 May 2010.

[10] S.K. Yogamani, " A Tutorial on Optimizing Vision Algorithms on TI
DSPs,” Texas Instruments Application Report SPNA165, August 2012.

[11] B.R. Kiran, K.P. Anoop, Y.S. Kumar; “Parallelizing connectivity-based
image processing operators in a multi-core environment”, International
Conference on Communications and Signal Processing (ICCSP), 2011.

[12] V.A. Prisacariu, I. D. Reid, “fastHOG - a real-time GPU
implementation of HOG”, University of Oxford, Technical Report
2310/09.

[13] A. Ess, B. Leibe, K. Schindler, L. van Gool, “A Mobile Vision System
for Robust Multi-Person Tracking”, IEEE Conference on Computer
Vision and Pattern Recognition (CVPR'08).

[14] Q. Zhu, M.C. Yeh, K.T. Cheng, S. Avidan, “Fast human detection using
a cascade of histograms of oriented gradients”, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR'06).

355

